首页> 外文OA文献 >CUDAMPF++: A Proactive Resource Exhaustion Scheme for Accelerating Homologous Sequence Search on CUDA-enabled GPU
【2h】

CUDAMPF++: A Proactive Resource Exhaustion Scheme for Accelerating Homologous Sequence Search on CUDA-enabled GPU

机译:CUDampF ++:一种用于加速的主动资源消耗计划   在支持CUDa的GpU上进行同源序列搜索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Genomic sequence alignment is an important research topic in bioinformaticsand continues to attract significant efforts. As genomic data growexponentially, however, most of alignment methods face challenges due to theirhuge computational costs. HMMER, a suite of bioinformatics tools, is widelyused for the analysis of homologous protein and nucleotide sequences with highsensitivity, based on profile hidden Markov models (HMMs). Its latest version,HMMER3, introdues a heuristic pipeline to accelerate the alignment process,which is carried out on central processing units (CPUs) with the support ofstreaming SIMD extensions (SSE) instructions. Few acceleration results havesince been reported based on HMMER3. In this paper, we propose a five-tieredparallel framework, CUDAMPF++, to accelerate the most computationally intensivestages of HMMER3's pipeline, multiple/single segment Viterbi (MSV/SSV), on asingle graphics processing unit (GPU). As an architecture-aware design, theproposed framework aims to fully utilize hardware resources via exploitingfiner-grained parallelism (multi-sequence alignment) compared with itspredecessor (CUDAMPF). In addition, we propose a novel method that proactivelysacrifices L1 Cache Hit Ratio (CHR) to get improved performance and scalabilityin return. A comprehensive evaluation shows that the proposed frameworkoutperfroms all existig work and exhibits good consistency in performanceregardless of the variation of query models or protein sequence datasets. ForMSV (SSV) kernels, the peak performance of the CUDAMPF++ is 283.9 (471.7) GCUPSon a single K40 GPU, and impressive speedups ranging from 1.x (1.7x) to 168.3x(160.7x) are achieved over the CPU-based implementation (16 cores, 32 threads).
机译:基因组序列比对是生物信息学中的重要研究课题,并继续吸引着巨大的努力。然而,随着基因组数据呈指数增长,大多数比对方法由于其巨大的计算成本而面临挑战。 HMMER是一套生物信息学工具,基于轮廓隐式马尔可夫模型(HMM),被广泛用于具有高灵敏度的同源蛋白质和核苷酸序列分析。它的最新版本HMMER3引入了启发式管道来加快对齐过程,该过程在中央处理单元(CPU)上通过流SIMD扩展(SSE)指令的支持来执行。自从基于HMMER3以来,几乎没有报告加速结果。在本文中,我们提出了一个五层并行框架CUDAMPF ++,以在单个图形处理单元(GPU)上加速HMMER3流水线中最密集的计算阶段,即多/单段Viterbi(MSV / SSV)。作为一种可感知架构的设计,提出的框架旨在通过与其前身(CUDAMPF)相比,利用更细粒度的并行性(多序列对齐)来充分利用硬件资源。此外,我们提出了一种主动牺牲L1缓存命中率(CHR)的新方法,以提高性能和可伸缩性。全面的评估表明,无论查询模型或蛋白质序列数据集如何变化,所提出的框架均胜过所有现有工作,并且在性能方面表现出良好的一致性。对于MSV(SSV)内核,在单个K40 GPU上,CUDAMPF ++的最高性能为283.9(471.7)GCUPS,并且在基于CPU的实现上实现了1.x(1.7x)到168.3x(160.7x)的惊人提速。 (16核,32线程)。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号